- Sztuczna inteligencja musi być kontrolowalna i wyjaśnialna, jeśli ma zrobić rewolucję w medycynie. Lekarz wspierający się jej sugestiami, powinien rozumieć, skąd się one wzięły - uważają naukowcy z Politechniki Warszawskiej, którzy wybierają się na prestiżową konferencję naukową w Singapurze. Opowiedzą na niej o podejściu do obszaru wyjaśnialnej AI, które zastosowali w narzędziu Xlungs pomagającym diagnozować płuca.
Xlungs - polska AI, która wspiera analizę badań tomografii komputerowej klatki piersiowej
W swojej pracy, zatytułowanej „Rethinking Visual Counterfactual Explanations Through Region Constraint” (Przedefiniowanie wizualnych wyjaśnień kontrfaktycznych poprzez regionalne ograniczenie), która zostanie zaprezentowana w Singapurze, zespół badaczy z Politechniki Warszawskiej wprowadza nowatorską metodę, która pozwala lepiej zrozumieć, jak sztuczna inteligencja podejmuje decyzje podczas analizy obrazów. Zamiast generować ogólne sugestie dotyczące całego obrazu, jak to ma miejsce w tradycyjnych wyjaśnieniach kontrfaktycznych, ich metoda koncentruje się na wybranych fragmentach obrazu. Dzięki temu lekarze mogą łatwiej zrozumieć, które konkretne zmiany w analizowanym obrazie wpłynęłyby na inną decyzję modelu AI. To podejście może być szczególnie pomocne w medycynie, gdzie precyzyjna interpretacja obrazów ma kluczowe znaczenie dla postawienia diagnozy.
Dlaczego wyjaśnialna AI jest potrzebna w medycynie?
Xlungs to projekt naukowy wykorzystujący sztuczną inteligencję do monitorowania i analizy zmian chorobowych w klatce piersiowej. Jego zadaniem jest wspieranie lekarzy – głównie pulmonologów i radiologów - przy analizie badań tomografii komputerowej. Rozwiązanie opracował zespół naukowców z Politechniki Warszawskiej weryfikując dane wspólnie z radiologami zatrudnionymi w projekcie. Stworzyli oni unikalny model sztucznej inteligencji , który wydobywa kluczowe informacje z historycznych obrazów CT, automatyzuje proces opisywania wyników i skraca czas ich analizy. Projekt jest finansowany przez Narodowe Centrum Badań i Rozwoju w ramach programu INFOSTRATEG I.
MI².AI to zespół badawczy zajmujący się data science i uczeniem maszynowym. Tworzą go pracownicy naukowi i doktoranci dwóch wiodących wydziałów matematyki i informatyki w Polsce: MIM Uniwersytetu Warszawskiego i MiNI Politechniki Warszawskiej. Zajmuje się prowadzeniem badań naukowych z dziedziny sztucznej inteligencji jak również praktycznym zastosowaniem ich efektów oraz popularyzacją wiedzy z obszaru swojej ekspertyzy.