Perché essere data-driven è così difficile?

Perché essere data-driven è così difficile?

Lo sfruttamento del vero potenziale del dato passa da presupposti tanto culturali quanto tecnici, rendendo la data-driven transformation l’esempio perfetto di un’evoluzione aziendale che deve fondarsi su un approccio integrato.
Di Alessandra Girardo, General Manager Italia, Kirey Group.
Non più un fattore tecnico, ma un vero e proprio pilastro strategico del business, che proietta l’azienda nel futuro: questo è il ruolo del dato nella data-driven company, il traguardo a cui la maggior parte delle organizzazioni sta cercando di giungere con tutte le proprie forze.
Si stima, infatti, che la trasformazione data-driven rientri nei piani dell’85% delle imprese italiane, ma l’iter, per molti, sembra ancora lungo. Secondo una ricerca globale, è solo il 16% delle aziende a definirsi davvero guidata dai dati, mentre la maggioranza, ovvero il 34%, si proclama semplicemente “data aware”, indicando di trovarsi ancora nella fase iniziale di riconoscimento dell'importanza dei dati, senza averli ancora integrati completamente nei propri processi.
Ma perché è così difficile? Per rispondere a questa domanda, è necessario prendere in considerazione tre diversi elementi, tra loro collegati.
1. La base di partenza non è tecnica, ma culturale
I tool, ed in particolare l’intelligenza artificiale, vengono tendenzialmente ritenuti dalle aziende il principale elemento abilitante della trasformazione data-driven. Eppure, investire in numerosi progetti di dati e analisi non è sufficiente per portare i dipendenti a integrare i dati nelle proprie attività quotidiane.
La sfida principale, infatti, è creare la cosiddetta “data culture”. Ciò dipende dall'onnipresente resistenza al cambiamento, ma anche dalla profondità della trasformazione. Quest’ultima deve, infatti, sostituire i meccanismi consolidati, gli approcci intuitivi e quelli basati sull'esperienza con un vero e proprio metodo analitico che, per essere abbracciato, richiede un mindset ad hoc.
Data l’ampiezza del fenomeno, adottare un paradigma data-centric è quindi tutt’altro che banale ed implica in molti casi una trasformazione sistemica che non tutte le aziende hanno intrapreso e che ben poche hanno completato, tanto che in alcuni sondaggi 6 leader aziendali su 10 ammettono di non esserci riusciti.
2. I dati non si applicano solo al decision-making
I dati guidano i processi decisionali e sono resi disponibili per stimolare l'innovazione e creare valore per i clienti, ma non sono vincolati al solo decision-makingIn una data-driven company, il dato migliora i processi e le relazioni interne ed esterne, oltre a supportare l’individuazione di opportunità di innovazione e di sviluppo di nuovi prodotti, servizi e anche modelli di business.
Il vero potere del dato risiede nelle molteplici potenzialità dell’informazione, presupponendo, però, a livello aziendale, di sviluppare il pensiero critico e la lungimiranza necessari ad usare i dati per illuminare le opportunità future e i percorsi di crescita.
3. I dettagli tecnici sono comunque fondamentali
Come abbiamo visto, l'implementazione di strumenti e tecnologie avanzate non è sufficiente a realizzare il pieno potenziale dei risultati basati sui dati; ma, pur non rappresentando il principale motivo di apprensione, la sfida tecnica non va sottovalutata. 

Se fino a poco tempo fa, infatti, le imprese interpretavano i propri dati solo in ottica transazionale, vincolandoli a silos inadatti a supportare complesse attività di analisi, e la pecca risultava in primis culturale, oggi per abbatterli è necessario promuovere la cooperazione, modernizzare le infrastrutture e, soprattutto, adottare la giusta tecnologia, grazie a cui abilitare uno standard per la condivisione automatica delle informazioni.
La soluzione non è univoca: serve un approccio integrato
Il passaggio verso un modello data-centric non segue un percorso predefinito e spetta a ogni organizzazione identificare la strada migliore in base al proprio modello di business, alla maturità digitale di partenza e alla complessità dell'ecosistema organizzativo e informativo.
Tuttavia, indipendentemente dal punto di partenza, la chiave per costruire una strategia data-driven efficace consiste senza dubbio nell'adottare un approccio integrato, facendo sì che l’evoluzione tecnologica, culturale e organizzativa procedano di pari passo.
Il primo step in tal senso è l'impegno attivo del top management, che deve supportare la trasformazione con azioni concrete e assumersi la responsabilità del cambiamento. A livello organizzativo, la centralità del dato si ottiene promuovendo un approccio collaborativo tra competenze tecniche e di business, nonché integrando dati e analytics in ogni unità funzionale dell'azienda.
Più precisamente, i dati vanno democratizzati: devono essere accessibili in tutta l'organizzazione, facendo sì che tutti gli utenti dispongano di competenze di analisi (data literacy) proporzionate alle proprie necessità.
I dati stessi devono rispondere a precisi criteri: devono essere reperibili (findable), accessibili (accessible), interoperabili (interoperable) e riutilizzabili (reusable), viaggiando su architetture moderne di data management che coprano trasversalmente tutta l’organizzazione, integrino sorgenti di dati strutturati e non, e dispongano di metadati completi e descrittivi che facilitino la ricerca. In questo contesto, ad esempio, l'uso di synthetic data rappresenta una leva fondamentale per la democratizzazione dei dati, consentendo l’accesso sicuro e responsabile a informazioni utili, senza compromettere la privacy o la confidenzialità, favorendo così una condivisione più ampia e diffusa dei dati attraverso l’intera organizzazione.
Assicurata la qualità del dato, lo sviluppo di un solido quadro di governance sarà fondamentale per gestire le modalità di raccolta, archiviazione, accesso e utilizzo dei dati all'interno dell'organizzazione, garantendo la conformità agli standard legali e alle considerazioni etiche.
Infine, un’azienda moderna, che basa la propria competitività sullo sfruttamento delle potenzialità dei dati, deve essere pronta a sperimentare e adottare velocemente nuove metodologie e soluzioni, mettendo in discussione gli approcci tradizionali, nella coscienza che l’evoluzione data-driven non può che essere graduale e (molto) progressiva.
We use cookies to run our website, analyze your use of our services, manage your online preference & personalize ad content. By accepting our cookies, you’ll get relevant content and social media features, personalized ads, and an enhanced browsing experience. To manage your choices, click „Cookie Settings”. Necessary cookies are required for the core website functionality and cannot be rejected. For more information, see our Cookie Policy.
Cookie settings
Cookies used on the site are categorized and below you can read about each category and allow or deny some or all of them, except for Necessary Cookies which are required to provide core website functionality. When categories that have been previously allowed are disabled, all cookies assigned to that category will be removed from your browser. You can see a list of cookies assigned to each category and detailed information on those cookies in the “Cookie Policy” tab.
Necessary cookies
Some cookies are required to provide core functionality. The website won't function properly without these cookies and they are enabled by default and cannot be disabled.
Preferences
Preference cookies enables the website to remember information to customize how the website looks or behaves for each user. This may include storing selected currency region, language or color theme.
Analytical cookies
Analytical cookies help us improve our website by collecting and reporting information on its usage.
Marketing cookies
Marketing cookies are used to track visitors across websites to allow publishers to display relevant and engaging advertisements. By enabling marketing cookies, you grant permission for personalized advertising across various platforms.